首页> 外文OA文献 >Advanced electron paramagnetic resonance on the catalytic iron-sulfur cluster bound to the CCG domain of heterodisulfide reductase and succinate: Quinone reductase
【2h】

Advanced electron paramagnetic resonance on the catalytic iron-sulfur cluster bound to the CCG domain of heterodisulfide reductase and succinate: Quinone reductase

机译:催化铁 - 硫簇上的高级电子顺磁共振与异二硫化物还原酶和琥珀酸的CCG结构域结合:醌还原酶

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Heterodisulfide reductase (Hdr) is a key enzyme in the energy metabolism of methanogenic archaea. The enzyme catalyzes the reversible reduction of the heterodisulfide (CoM-S-S-CoB) to the thiol coenzymesM(CoM-SH) and B (CoB-SH). Cleavage of CoM-S-S-CoB at an unusual FeS cluster reveals unique substrate chemistry. The cluster is fixed by cysteines of two cysteine-rich CCG domain sequence motifs (CX31-39CCX35-36CXXC) of subunit HdrB of the Methanothermobacter marburgensis HdrABC complex. We report on Q-band (34 GHz) 57Fe electron-nuclear double resonance (ENDOR) spectroscopic measurements on the oxidized form of the cluster found in HdrABC and in two other CCG-domain-containing proteins, recombinant HdrB of Hdr from M. marburgensis and recombinant SdhE of succinate: quinone reductase from Sulfolobus solfataricus P2. The spectra at 34 GHz show clearly improved resolution arising from the absence of proton resonances and polarization effects. Systematic spectral simulations of 34 GHz data combined with previous 9 GHz data allowed the unambiguous assignment of four 57Fe hyperfine couplings to the cluster in all three proteins. 13C Mims ENDOR spectra of labelled CoM-SH were consistent with the attachment of the substrate to the cluster in HdrABC, whereas in the other two proteins no substrate is present. 57Fe resonances in all three systems revealed unusually large 57Fe ENDOR hyperfine splitting as compared to known systems. The results infer that the cluster's unique magnetic properties arise from the CCG binding motif. © SBIC 2013.
机译:杂二硫键还原酶(Hdr)是产甲烷古菌能量代谢中的关键酶。该酶催化杂二硫键(CoM-S-S-CoB)可逆还原为硫醇辅酶M(CoM-SH)和B(CoB-SH)。在不寻常的FeS簇上切割CoM-S-S-CoB揭示了独特的底物化学。该簇是由马氏甲烷球菌HdrABC复合体的HdrB亚基的两个富含半胱氨酸的CCG域序列基序(CX31-39CCX35-36CXXC)的半胱氨酸固定的。我们报告了Q波段(34 GHz)57Fe电子核双共振(ENDOR)光谱测量对HdrABC和其他两个包含CCG域的蛋白质,来自M. marburgensis的Hdr的重组HdrB的簇的氧化形式的发现。和琥珀酸的重组SdhE:来自Sulfolobus solfataricus P2的醌还原酶。由于没有质子共振和极化效应,在34 GHz的光谱显示出明显提高的分辨率。通过对34 GHz数据与之前的9 GHz数据进行系统的光谱模拟,可以将所有三种蛋白质中的四个57Fe超精细偶联明确分配给簇。标记的CoM-SH的13C Mims ENDOR光谱与HdrABC中底物对簇的附着一致,而在其他两种蛋白质中则不存在底物。与已知系统相比,所有三个系统中的57Fe共振都显示出异常大的57Fe ENDOR超细分裂。结果推断,团簇的独特磁性来自CCG结合基序。 ©SBIC 2013。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号